Toward an unsupervised boosting-like

BILLOT ; SUCHIER ; LALLICH

Type de document
COMMUNICATION AVEC ACTES INTERNATIONAL (ACTI)
Langue
anglais
Auteur
BILLOT ; SUCHIER ; LALLICH
Résumé / Abstract
This work deals with the adaptation of the main principles of boosting, an efficient supervised ensemble method, into an unsupervised framework. As these two fields are conceptually distinct, boosting unsupervised learning methods raises a certain number of problems. Some are related to clustering and cluster ensembles, such as the clustering validation, the cluster correspondence and the results aggregation. More specific problems arise from the specific case of boosting. In this paper, a new Unsupervised Boosting-Like Approach (UBLA) is proposed, aiming at responding to these critical issues. The experimentations show significant results which pave the way for a better integration of boosting into clustering. eric.univ-lyon2.fr/

puce  Accès à la notice sur le portail documentaire de l'IFSTTAR

  Liste complète des notices publiques de l'IFSTTAR