Three-dimensional parabolic equation model for low frequency sound propagation in irregular urban canyons

DOC ; LIHOREAU ; FELIX ; FAURE ; DUBOIS

Type de document
ARTICLE A COMITE DE LECTURE REPERTORIE DANS BDI (ACL)
Langue
anglais
Auteur
DOC ; LIHOREAU ; FELIX ; FAURE ; DUBOIS
Résumé / Abstract
A three-dimensional wide-angle parabolic equation (3DPE) is used to model low frequency sound propagation in irregular urban canyons at low computational cost. This one-way wave equation is solved using the Alternating Direction Implicit method. A finite difference scheme adapted to the geometry of the urban environment is then developed. Abrupt variations of the street width are treated as a single scattering problem using the Kirchhoff approximation. Numerical results are compared with experimental data obtained on a scale model of a street. Comparisons show the ability of the 3DPE model to provide reliable transmitted fields even for large irregularities.
Source
Journal of the Acoustical Society of America, num. 1, pp. 310-320 p.
Editeur
Acoustical Society of America

puce  Accès à la notice sur le portail documentaire de l'IFSTTAR

  Liste complète des notices publiques de l'IFSTTAR