Méthode de résolution du M4-5n par éléments finis mixtes pour l'analyse des chaussées avec discontinuités
Solving M4-5n by a Mixed Finite Element method for the analysis of pavements with discontinuities
NASSER
Type de document
THESE
Langue
francais
Auteur
NASSER
Résumé / Abstract
Les chaussées subissent des sollicitations liées au trafic et au climat conduisant à leur dégradation, par fissuration notamment. Il est nécessaire dans le contexte actuel de pouvoir modéliser le comportement de ces structures multicouches endommagées afin de prévoir leur durée de vie résiduelle ou dimensionner des solutions de renforcement. L'objectif de la thèse est ainsi de proposer un outil de calcul dédié à l'analyse 3D des chaussées fissurées ou comportant des discontinuités.
L'approche retenue repose sur la modélisation simplifiée d'une chaussée par un empilement de plaques du Modèle Multi-particulaire des Matériaux Multicouches à 5n équations d'équilibre (M4-5n). Un outil de calcul rapide de référence de chaussées 2D fissurées et une méthode de résolution générale du M4-5n par Eléments Finis mixtes sont développés. Le point de départ de la méthode de résolution est l'écriture, pour le M4-5n, du principe variationnel basé sur le théorème de l'énergie complémentaire où la condition de contraintes statiquement admissibles est assurée à partir de multiplicateurs de Lagrange. La discrétisation des efforts généralisés utilise des espaces d'interpolation permettant le bon conditionnement du système d'équations algébriques à résoudre et garantissant la stabilité de la solution. La méthode est implémentée dans FreeFem++. Elle ramène le problème 3D initial à une modélisation EF 2D et conduit à des valeurs finies des efforts généralisés au niveau des fissures ou décollement d'interface.
L'outil de calcul final ainsi développé est validé et appliqué à l'étude de la réponse d'une structure fissurée, représentative d'une chaussée testée en vraie grandeur sur le site de l'IFSTTAR.