Effects of aggregate size on water retention capacity and microstructure of lime-treated silty soil
WANG ; CUI ; TANG ; BENAHMED
Type de document
ARTICLE A COMITE DE LECTURE REPERTORIE DANS BDI (ACL)
Langue
anglais
Auteur
WANG ; CUI ; TANG ; BENAHMED
Résumé / Abstract
Lime treatment is a common technique of improving the workability and geotechnical properties of soils. In this study, the aggregate size effects on the water retention capacity and microstructure of lime-treated soil were investigated. Two soil powders with different maximum aggregate sizes (D max = 0·4 and 5 mm) were prepared and stabilised by 2% lime (by weight of dry soil). Soil samples were prepared by compaction at dry side of optimum water content (w = 17%) with a dry density of 1·65 Mg/m 3. Suction and pore size distribution were determined after different curing periods. The results obtained show that: (a) the treated soil with smaller D max presents relatively smaller modal sizes and lower frequency of macropores (10?330 ?m); (b) lime addition effectively improves the soil water retention capacity and decreases both the modal sizes of macro-and micropores gradually over time. Moreover, a higher air entry value and larger water retention capacity were also observed for a smaller D max value, in agreement with the pore size distributions.
Source
Géotechnique Letters, num. 4, pp. 269-274 p.
Editeur
ICE PUBLISHING