Un modèle de mélange pour la segmentation de données spatiales
SAME ; TAREL ; SAIDI
Type de document
COMMUNICATION AVEC ACTES NATIONAL (ACTN)
Langue
francais
Auteur
SAME ; TAREL ; SAIDI
Résumé / Abstract
Cet article décrit une approche basée sur les mélanges de lois, pour la modélisation et la segmentation de données spatiales. La dépendance spatiale des données y est prise en compte par le biais des proportions du mélange, qui sont modélisées par des transformations logistiques de fonctions polynomiales des coordonnées spatiales. Les paramètres du modèle proposé sont estimés par la méthode du maximum de vraisemblance via un algorithme EM spécifique, qui incorpore un algorithme de Newton-Raphson pour l'estimation des coefficients des fonctions logistiques. Les expérimentations, menées sur des images simulées, donnent des résultats encourageants en termes de précision de segmentation.